If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+39x-10=0
a = 4; b = 39; c = -10;
Δ = b2-4ac
Δ = 392-4·4·(-10)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-41}{2*4}=\frac{-80}{8} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+41}{2*4}=\frac{2}{8} =1/4 $
| 3b+5=8+3b | | -9v-6v=(-16.5) | | 4p−25=31 | | 6x+11+8x-3=180 | | 16=2(2x | | 3(x+5)-(2x-9=27 | | 3+7(-6+6a)=-165 | | 3/4+x=5/6+1/2x | | -2(5x+1)-4x=-86 | | (5x-1)+(5x-9)=90 | | 6u^{2}-30u=0 | | 21/4=k=-13/10 | | –6n=7+n | | 8x(1)=6 | | 3/10=6/x | | 7(8v-4)=-420 | | –8=s3+ –12 | | 21/3=k=13/10 | | 5(m+6)=21 | | 90+(x+27)+27=180 | | 4n+3(3+4n)=-103 | | –9u+6=–7u | | -7(6-6x)=-210 | | s/4−27=36 | | 4r=9+7r | | s/4−–27=36 | | -2+x/3=10 | | 7h=8h+9 | | 3x^2-45x-150=0 | | (x-4)(7-x)=5x^2 | | (x^2+12)=(6x+16) | | 14,500+2,500t=33,500 |